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Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions
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A monomer-dimer reaction lattice model with lateral repulsion among the same species is studied using a
mean-field analysis and Monte Carlo simulations. For weak repulsions, the model exhibits a first-order irre-
versible phase transition between two absorbing states saturated by each different species. Increasing the
repulsion, a reactive stationary state appears in addition to the saturated states. The irreversible phase transi-
tions from the reactive phase to any of the saturated states are continuous and belong to the directed percolation
universality class. However, a different critical behavior is found at the point where the directed percolation
phase boundaries meet. The values of the critical exponents calculated at the bicritical point are in good
agreement with the exponents corresponding to the parity-conserving universality class. Since the adsorption-
reaction processes does not lead to a nontrivial local parity-conserving dynamics, this result confirms that the
twofold symmetry between absorbing states plays a relevant role in determining the universality class. The
value of the exponend,, which characterizes the fluctuations of an interface at the bicritical point, supports the
Bassler-Brown’s conjecture, which states that this is a new exponent in the parity-conserving universality class.
[S1063-651%98)00407-3
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I. INTRODUCTION sponding to the order parameter arise at the multicritical

point while the dynamical critical exponents take the same

Nonequilibrium models are relevant to a broad scope otalues as the ones corresponding to DP. This new result

phenomena in physics, chemistry, biophysics, ecology, et@dain poses the question of whether a few distinct universal-

A relevant feature of the nonequilibrium models which ex- ity classes are enough to characterize the critical behavior of
hibit a second-order irreversible phase transit{tRil) to a nor;eqwhbr:jurln tsg/sttedr_nﬁllﬂ. h ¢ ition in the PC ¢l

unique absorbing state is that their critical behavior is in the €w models that dispiay a phase transition in the class

directed percolatiofDP) universality clasg1]. DP critical where no explicit conservation law is present have appeared

- r ) X .in the literature. The known examples are the generalized
behavior is observed over wide-ranging problems emerg'n@)omany-Kinzel cellular automatal8], the three-species

from dlﬁerent d|SC|pI|n§s such as quantum particle physmﬁnonomer-monomer mod§19], and the monomer-monomer
[2], irreversible catalytic systeniS—5], the contact process g face reaction modéR0,21]. Since these models do not
[6], branchmg annihilating r_andom walks with an odd nUM-explicitly conserve any quantity modulo 2 they show that
ber of offspring[7], etc. This fact led Janssen and Grass-rather than parity conservation the symmetry among absorb-
berger to conjecture that in one-component models continung states is the origin for the emergence of a different class
ous transitions to a single absorbing state are in the DP1g 27
universality clasg8]. Motivated by these findings several  |n this work we study the behavior of the one-dimensional
models with multiple absorbing states were proposed but nmonomer-dimer surface reaction model with lateral repul-
new universality class was founi®]. This proved that a sion by means of a mean-fieldMF) analysis and Monte
greater number of absorbing states is not enough to obtain@arlo simulations. This model is an extension in one dimen-
critical behavior different from DP. Thus the DP universality sion of the well-known Ziff, Gulari, and Barshad surface-
class is apparently extremely robust. reaction model3]. The model was first proposed by Kim
In contrast to the well-established DP universality classand Park[13] and studied in the case of infinitely strong
only a few exceptions are known that do not belong to thigepulsions. For finite repulsions the model has a rich critical
class. The known examples are modélandB of probabi-  Pehavior displaying first- and second-order IPT.
listic cellular automatf10,11], nonequilibrium kinetic Ising The manuscript is organized as follows. In Sec. Il we
models[12], the interacting monomer-dimer model with in- begin with a brief description of the model and show the

finite repulsion[13], and the branching annihilating random Phase diagram obtained by simulations. In Sec. Ill we
walks with an even number of offspringé4—16. A rel- present the MF analysis and compare MF results with simu-

evant feature is shared by all these models: the number (yfuion results. Section IV contains a detailed analysis of the
particles(or kinks) is conserved modulo 2. That is why this critical behavior of the model performed by means of Monte

new universality class is sometimes called parity-conservin arlo simulations. In the last section we summarize our re-
(PO class. ults.

Recently, a hierarchy of unidirectionally coupled DP pro- Il THE MODEL
cesses has been studidd]. It has been shown by means of '
field-theoretic renormalization group techniques and Monte The model we study in this paper was first introduced by
Carlo simulations that new values of the expongntorre-  Kim and Parl{13]. The monomer-dimer reaction model with
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lateral interactions can be defined as follows: A monomer 1.00
or a dimerB, adsorb at the vacant sites of a one-dimensional

lattice with probabilitiesp and q, respectively, wher@+q rcncie
=1. Each adsorption attempt begins by selecting one site of 075 | Window
the lattice at random and if that site is occupied the trial ends. Pl
Otherwise, if the site is empty, ah (B,) species is selected
with probability p (q), respectively. In order to introduce
lateral interactions between the same kinds of particles, it is
assumed that the adsorption probability of the selected spe- A-Saturated Phase
cies depends on the configuration of the adsorbed particles
on the nearest neighboringN) sites of the selected one.
Then the adsorption probability, can be written as

B-Saturated Phase

o 050

p if 3 NN A 000 ‘ ‘ ‘ ‘
P,= ) 2.1 0.00 0.25 0.50 0.75 L.00
ATl p(1—-ry if 3 NN A, @1 .
where O<r,<1. For the adsorption oB, one has first to FIG. 1. Phase diagram of the model obtained by means of

select at random a NN site of the empty one and if that site i§1onte Carlo simulations.

occupied the trial ends because the dimer cannot be depogst hayve been calculated using dynamic Monte Carlo simu-
ited on the lattice. Otherwise, if the site is empty, the adsorpiations since fluctuations in this case are imposing.

tion probability Py, is given by For r=1 (infinite repulsion [13] one can identify since
) the very beginning the presence of two equivalent absorbing

_]a if 2 NN B , 5 States. Although one cannot fimdpriori a situation like this
B2 | q(1—rg) if 3 NN B. 22 for 0=r<1, a phase point where both absorbing states are

statistically equivalent can exist. This happens exactly where
where O<rg<1. In this way, the parameterg, andrg can  both second order lines meet, i.e., at the bicritical point. A
be interpreted as the repulsive interactions among similagimilar phase diagram was also found in the interacting
species. Unlike species on adjacent sites react immediatefjfonomer-monomer reaction modg20]. Very recently, a
and leave the |attice, |eading to a process limited On'y by:a-reful .Stuqy at the b|Cr|t|Cal pOint_led to the Conplusion that
adsorption. this point is in the PC un!versallty cIas{Ql]. Given the.

In this work we study the case,=rg=r. Previous stud- symmetry of the adsorptlon process in _the interacting
ies of this mode[13,22 focused on various aspects of the Monomer-monomer reaction model the bicritical point was
critical behavior for infinite repulsive lateral interactions, i.e., fﬁ!"nd OE ctjhe Imepz-qzlo.S.h.Slnce the moﬂel lwe Igtudy In f
ra=rg=1. In this case, there are two equivalent absorbin%hIs g\_/or_ ) c;es not display Lf'fs s;qmmetry, the localization o
states whose configurations are given only by monomers oc- e bicritical point is more difficult.
cupying the odd- or even-numbered lattice sites, respec-
tively. The critical behavior of this model was found to be in
the PC universality class. In order to obtain a qualitative understanding of the be-

Figure 1 shows the phase diagram of the system obtainegaavior of the model a mean-field analysis is performed. We
by both static and dynamical Monte Carlo simulations. Thereconsider mean-field approximatiofd3] that study the time
are two different absorbing states characterized by the latticevolution of blocks up to three sites, neglecting higher-order
saturated byA or B species, respectively. For weak repul- correlations.
sions the system displays first order IPT between the satu- We start considering a one-dimensional system of kize
rated states, and no reactive phase is observed. The first orcir time t. Each site can be only at three different states,
critical points have been calculated by means of static Monteamely, A, B, or V corresponding to a site occupied by a
Carlo simulations since correlations at first order IPT areparticle of typeA, B or empty, respectively. In order to cal-
short ranged. Increasing the repulsion a reactive window apeulate MF approximations taking into account correlations
pears whose edges are second order critical lines that sepap to three lattice sites, we write down the following MF rate
rate this state from the absorbing states. The second ordeguations:

Ill. MEAN-FIELD THEORY

dpa
dat Ppvwvt P(1=r)(pavat pavvt pvva) —A(1—=T1)(pevvat pavve) —A(2pavvat PavvvT Pvvva)s (3.7

dps
dat ad(2pvvvvt pavvvt pyvva) T Ad(1=1)(pevvvt pyvveT Pevvt pyve) —P(1—T)(pavet Peva)

—p(pevet pevvt Pvva), (3.2
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dpan
at P(1—=r)(pyvat pavvt 2pava) —A(1—T)(paavvet Pevvans) — A(PaavvaT Pavvaat Paavuvt Pyvvad), (3.9

dpgs
ar dpyvwwt d(1—1)(pgvvet Pevvvt pvvvet pevvt pvve) —P(1—T)(peevat Paves)

—p(pyvest PeBVVT 7PBBVET 3PBVER) (3.9

dpana
at P(1—r)(pyvaat Paavvt PavaT Paavat pavan) —A(1—T)(pgyvaaat pPasavve

—d(paaavvat Pavvaaat Pvvvaaat PasAVVY) (3.9

dpges

at q(1-=r)(2psvvet pvvesT Peavvt PeVVVT Pvvve) —P(1—T)(peeeVAt PAVERE

—p(pyvesst PeBBVVT 2PBVEBET 2PBEBVE): (3.6

dpava
at P(pavvvt pyvva) +2p(1=T)payya— P(1—=T)pava—d(1—T)(pgvvavat Pavavve

—Ad(pavavvaT PavvavaT PyvvvavaT PavAVWY) (3.7
dPBVB_
_7§F_“_q(pBVVVV+PVVVVE+pAVVVB+pBVVV&'+2q(1_¢)pBVVVE_p(l_ﬂj(PBVBVK+PAVBVQ
—p(pvvevet pevevvt PevBVET PBVE) (3.9
and
dPAVB_ 1
__af_"ppVVVB+q(pVVVVK+pAVVVN_Fp(l_m)pAVVB+q(l_w)pAVVVB_p(pAVBVV+EPAVBVQ'_p(1_¢)pAVBVA
—q(pyvvavet Pavvave —d(1—T1)pgyvave— P(1—T)pave, (3.9
|
wherepiliziam is the density of the blockji,i; ... and we m-1 Pijijss
have used the equations that link the density ohaplock Pili2i3---im~Pili2H - (3.12

and the density of an+1 block =2 Py
Using Egs.(3.1)—(3.4), (3.11) and writing down the equa-
=S o (310 tions (3.10, which relate single-site densities with pair den-
P Pigisi:- iy ' sities a solution in the pair-MF approximation can be ob-
tained. Proceeding in a similar way, within the three-sites

. . . . MF approximation density of blocks longer than three sites
where AB pairs are not allowed since they immediately re- 5. replaced by

act. The processes considered to obtain 8y9H—(3.9) are
listed in Table I. Furthermore, we obviously have the follow-
ing constraint:

Piliz---in:i%}l Pijiy- i

nfn+1

M2 pi |

Jj+1ij+2
Pijijig- i~ Pijii H - -
1'2!37 " Im 12137555 pi

jlj+1

(3.13

+pgt+py=1. (3.1 . . . , .
PATPBT PV Due to the immediate reaction &B pairs, the stationary

densities of tripleAVB andBV A are equal. Then, by means

In the.simp_le MF analysis we just neglect.cqrrela_ltionsof equationsg3.1)—(3.9), and(3.11), and considering all the
among sites, i.€.pi i i,...i, ~pi Pi,Pi, - -pi . Within this  relations between single-site densities, density of pairs and
approximation, Eq93.1), (3.2, and(3.11), comprise a close density of triples, the three-sites MF approximation can be
set of equations. Then a solution feg, pg, andpy can be  solved. It should be pointed out that due to the complexity of
obtained. However, more equations are needed in order the set of equations all the MF approximations have been
obtain results for higher order MF analysis. In the pair MFsolved numerically.
approach we approximate the density of blocks longer than Figure 2 shows plots of the densities AfandB in the
two sites in the following way stationary state versys andq, respectively, for two differ-
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TABLE I. Probabilities for the allowed kinetic processes. The adsorption attempt is always on the middle

sites.

A adsorption Rate B, adsorption Rate
VVV—VAV p VVVV-VBBV q
VVA—VAA p(1-r) BVVV—BBBV o1l-r)
AVV—AAV p(1-r) VVVB—VBBB o1-r)
AVA—AAA p(1l-r) BVVB—BBBB oq1-r)
VVB—VVV p AVV\-VVBV q
BVV—-VVV p VVVA-VBVV q
BVB—BVV ip AVVA-VVVV q
BVB—VVB ip

AVB—AVV p(1-r) AVVB—VVBB oq1-r)
BVA—VVA p(1-r) BVVA—-BBVV oq1-r)

ent values of the repulsionobtained by static Monte Carlo correlations at a first order IPT are finite we expect the MF
simulations, simple, pair, and three-site MF analysis. Fompproaches to give good results. Although the simple MF
weak repulsion (= 0.5) the sharp jump observed in both the approximation is quite poor, results quickly improve for the
densities ofA andB is the signature of first order IPT. Since pair and three-site approaches. For higher values of the re-
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FIG. 2. Plots ofp, andpg vs p andq , respectively, obtained using static Monte Carlo simulations, simple, pair, and three-site MF

approximations(a) pa vs p for r=0.5, (b) pg vs q for r=0.5,(c) pa vs p for r=0.9, and(d) pg vs g for r=0.9.
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FIG. 3. Phase boundary curves obtained by means of Monte FIG. 4. Phase boundary curves obtained within the pair, and
Carlo simulations, pair, and three-site MF approximatio(@. three-site MF approximationsa) Pair MF approximation,(b)
Boundary of theA-saturated phaséh) boundary of theB-saturated  three-sites MF approximation.

phase. . . . I
interacting monomer-monomer reaction mod#l] a bicriti-

pulsionr the sharp variation in the densities is no longercal point can always be found given the symmetry of the
present but a smooth transition is observed. In general, M&dsorption process which is reflected in the MF rate equa-
theories do not give good results near second order contingions. However, no good approximation for this point was

ous IPT since second order IPT are governed by fluctuationgbtained up to the three-sites MF analysis.

However, as observed in Figsic?and 2d), we still obtain The monomer-dimer reaction model with lateral interac-
fairly good agreement between the three-sites MF approaciions displays a feature that is not present in the interacting
and simulation results. monomer-monomer reaction model. In fact, fpr=1, the

Figure 3 shows plots of the phase boundary for boththe stationary densityg is always less than one in spite of the
and B saturated phases obtained by simulations, pair, andalue of the repulsion. However,pg is a function ofr since
three-site MF approximations. Within the simple MF analy- local configurations likeBBVBB are more likely to occur
sis the phase boundary for the(B) saturated phase always when the repulsion is increased. Then, ¢ 1, we have a
occurs atp=1 (q=1), that is why it is not included in the one-dimensional random dimer filling problem with lateral
figure. For weak repulsions, the pair MF approach gives betinteractions. In this caspg is commonly called jamming
ter results for both thé\ and B phase boundaries than the coverage, which we denote a5(r).
three-sites MF analysis. However, for stronger repulsions, Figure 5 shows a plot db;(r) versusr obtained by simu-
correlations become more important and the three-sites MHations, pair, and three-site MF approximations. It should be
approximation leads to better results. It should be pointed outoted that a MF analysis of the jamming coverage requires at
that no bicritical point can be obtained from the MF approxi-least to take into account correlations up to pairs of sites. For
mations considered in this work. However, it is observed inf =0 both MF analyses predi@;(0)=0.864%....,reproduc-

Fig. 4 that phase boundary curves qualitatively resemble thiyg the value derived long ago by Flofg4]. As it has also
actual phase diagram. The closest points in the phase digeen observed for the phase boundary curves, the three-site
gram obtained within the three-site MF approach arepair) MF approximation gives better results for strong
(r¢~0.6, p2~0.348, (r.~0.6, p~0.305), which are good (weak repulsions.

approximations for the actual bicritical point & 0.559, We did not calculate higher order MF approximations
p.=0.35) (see next sectign In the MF treatment of the since the algebra becomes much more complicated and the
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10 ‘ , ‘ At the bicritical point, it is useful to perform another epi-
demic analysis often called “interface dynamics” simula-
tions. In this case one startstat 0 with a minimum width
interface between two saturated phases. SkBepairs im-
mediately react, there must always be at least a vacancy be-
tween two saturated phases. Then, the epidemic always sur-
vives and consequentl§=0. In addition, a second type of
“interface dynamics” simulation can also be performed. In
this case the simulation finishes when the interface has col-

« Stmulation Reaults lapsed back to its initial width19,21]. At the bicritical point
——- Pair MF Egs.(4.1), (4.2, and(4.3) hold butP(t) must be interpreted
06T T Threesites ME ] as the probability that the interface has not returned to its
. minimum width. Interface dynamics simulations give us in-
05 ‘ . ‘ formation about the competitive growth of different do-
0.1 0.2 0.5 0.8 1.1 ma|ns

r Figure 6 shows log-log plots dfi(t), P(t), andR(t) for

FIG. 5. Plot of the jamming coverag®;(r) vsr obtained using different values op close to the phase boundary between the

Monte Carlo simulations, pair, and three-site MF approximations. B-saturated and the reactive phase keepir@.9 constant.
The straight line obtained for the three quantities mentioned

MF approaches presented here provide a fairly good qualiteabove aig=0.835 is the signature of critical behavior, while

09

08

6,r)

07 r

tive understanding of the model. slight upward (downward deviations for q=0.8325 @
=0.8375) indicate supercriticalsubcritica) behavior, re-
IV. SIMULATIONS RESULTS spectively. In this way we have determined the critical points

] ) ) ) _along both second order phase boundary curves. The analysis
As mentioned in the last section, static Monte Carlo simu-t the bicritical point is discussed later. The spreading or
lations are suitable to obtain the coordinates of the first-ordegpigemic analysis is a powerful method since the error bars
transition points. However, second-order IPT are dominategor the calculations of the critical points are on the third
by fluctuations, so in a finite system and close to the criticaljigit. The critical exponents obtained at various critical
point, the stationary states of the reactive phase can irreverﬁbims along the phase boundary curves have the same values
ibly evolve into the saturated statabsorbing state Due to  (wjthin error bars and are in good agreement with the dy-

this circumstance, the precise determination of both criticahsmic critical exponents corresponding to DP, which are the
points and critical exponents is rather difficult. However, thiSfOHOWing:

shortcoming can be avoided by performing an epidemic

analysis[1]. Within this context, the epidemic analysis is 6=0.162, »=0.317, z=1.282. (4.9
usually called “defect dynamics” simulations. For this pur- _

pose one starts, &0, with a small block of vacant sites in By drawing the second order phase boundary curves one
an otherwise saturated lattice, i.e., a configuration close tgets the first clue to the position of the bicritical point. The
one of the absorbing states. Then, the time evolution of thighain property of the system at the bicritical point is the
block is analyzed by measuring the following propertigs: Symmetry of both saturated phases. This means that at the
The average number of vacant sites at timdl(t), (i) the  bicritical point both absorbing states are statistically equiva-
survival probability of the block at timg P(t), and(iii) the  lent. Then, defect dynamics simulations at the bicritical point
average distance over which the block has Spread atttime should give identical results no matter what saturated phase
R(t). Finite-size effects are absent because the system i§ used to start the simulation.

taken large enough to avoid the presence of vacant sites at Figure 7 shows log-log plots oR(t), P(t), and R(t)

the boundaries. For this purpose a lattice of bells is  Oobtained from defect dynamics simulations started using dif-
enough_ Averages are taken Ove|5 Hirfferent Samp|es_ Near ferent absorbing states at the bicritical pOint. It is observed
the critical point, the number of vacant sites is often verythat the critical behavior up to tinte= 10> is governed by the
small. Then, we improve the efficiency of the algorithm by Same exponents. Then, our best estimation of the value of the
keeping a list of vacant sites. Time is incremented b)(ﬂ)/, bicritical pOint is (rc=O.559,pC=O.35). It should be pOinted
wheren(t) is the number of vacant sites at tine Time  Out that in the study of the interacting monomer-monomer
evolution of blocks is monitored up to=1C°. At criticality, ~ reaction mode[21] the localization of the bicritical point

the following scaling behavior holds: was .easier because of the symmetry of the adsorption-
reaction processes.
N(t)oct?, 4.1 We obtain the following values for the dynamical critical
exponents at the bicritical point
P(t)oct™?, (4.2
6=0.2910+0.0002, »=0.0034+=0.0003,
and
z=1.147+0.0004. 4.5
R(t)ot??, 4.3

It should be remarked that the error bars merely indicate the
where §, n, andz aredynamicexponents. statistical errors obtained from regressions.
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FIG. 6. Log-log plots obtained using defect dynamics simula-
tions keeping =0.9 constant(a) N(t) vst, (b) P(t) vst, (c) R(t)
vst.

FIG. 7. Log-log plots obtained using defect dynamics simula-
tions initiated using different absorbing states at the bicritical point.

(@ N(t) vst, (b) P(t) vst, (c) R(t) vst.

The exponenp, which characterizes the critical behavior where A is the distance from a point within the reactive
of the order parameter, has been obtained directly in statiphase to the bicritical point. Figure 8 shows a plotqf
simulations. For the present model a good choice for th&ersusA where the points within the reactive phase belong
order parameter is the average density of empty gites  to a straight line that bisects the reactive window. Although
The behavior of the order parameter close to a critical poinstatic simulations are known to be quite inaccurate to deter-
mine B, we found the reasonable valye=0.88+ 0.005.

The set of critical exponents calculated at the bicritical
point are in good agreement with the ones corresponding to

is given by

pv~IAl%, (4.6
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10

r=0559;p=033
——-r=057.p=0.3484
- 1=0.55% p=0355

Pv

10°

10 10 10" 10 10
A

FIG. 8. Plot of the density of vacant sitpg vs the distancéA | 3

to the bicritical point. A straight line of slop@=0.90 has been )

included. b) i’

the PC universality class. For defect dynamics simulations at 10}
r>r. and close to the bicritical point a crossover is observed
where the critical behavior at short timgsng timeg is gov-
erned by the PGDP) universality class.

In the following we present the results of the “interface
dynamics” simulations. Figure 9 shows plots of the number
of vacancies in the interfadé(t) and the average size of the
interfaceR(t) obtained using the first type of “interface dy-
namics” simulation(where §=0). We average over 20n-
dependent samples and we find the following value for the
dynamical critical exponents: 1005 0 10 0 o 0

R
5

r=0.559;p=035
——-r=057:p=3484
-~ 1=0.55%p=0355

71=0.2840%0.0002, 7,=1.1506 0.0004.  (4.7) FIG. 9. Log-log plots obtained using the first type of interface

. . . dynamics simulations§=0) for the following values of the param-
These values are in good agreement with the correspondlr@/ersz f=0.57, p=0.3484) (upper curvg (r=0.559, p=0.35)

critical exponents obtained in other models in the PC univer{miqdie curvg, (r=0.559, p=0.355) (lower curve. () N(t) vst,
sality clas§13-15,18,1% It should be noted that the values () R(t) vst.
of 7, andz; are similar to the ones obtained from “defect

dynamics” simulations if we only average over surviving .
runs. Then the first type of “interface dynamics” simulation . Recently Park and Pafi22] have found that the interact-

yields no new information about the dynamics of the inter-"'9 monomer-dimer reaction model with infinite repulsive

face and reflects the full equivalence of the absorbing Statégteractlon {=1) supports a kink representation where the

at the bicritical point. total number of kinks is conserved modulo 2. By including a

. . parity-conserving symmetry breaking field that favors one of
usiﬁgl:rzee }s(e):csohn?jwlfinpc!lof)sf ‘(‘jif:éte)r,]‘azg)éyirg:nlqig)” (;?r;al:?a?cidon. the absorbing states, the authors showed that the critical be-

We average over 2 10° independent samples and we find havior of the model changes _from PC to DP. Then, t_hey
the following values for the critical exponents: concluded_ that the conservation of _the number o_f kinks
modulo 2 is not the reason for observing a universality class
different from DP but the symmetry of the absorbing states.
In contrast to the case with infinite repulsion, the present
variant of the model involves adsorption-reaction processes
z,=1.160+0.0006. (4.8 in which parity is not conserved explicitly. Although by their
own nature the number of domain walls are conserved
We first observe that the values of the exponemtand z, modulo 2, it should be remarked that a nontrivial PC dynam-
are similar. The exponeny; must be compared wittd, ics requires the creation of at least three kinks per step,
+ 75, which governs the time evolution of the vacant siteswhich is not possible in our model. This corroborates that the
averaged only over the surviving runs. Both exponents areaymmetry among absorbing states is indeed the only essen-
equal within error bars. This is the signature of the universatial property of models in the PC claf$3,18,19,2].
behavior of the critical spreading of the interface. The value It is interesting to discuss the relation between the present
of the new independent dynamical exponéntsupports the model and the branching and annihilating walks models.
Bassler-Browne conjecturgl9], which states tha®, is a  Static Monte Carlo simulations close to the bicritical point
new universal exponent within the PC class. reveal that stationary configurations are formed by large

6,=0.7163-0.0003, 7,= —0.42770.0004,
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10° | | | | clusters of different species that survive a long time. Then, it
is clear that the dynamics of domain walls between clusters
of different species will be relevant at the bicritical point.
Following the ideas presented in R¢L8], at the bicritical
point “walkers” can be identified with domain walls be-
tween clusters of different species. It should be pointed out
that we have to generalize the concept of walkers. In fact, the
“walkers” defined above are extended objects of fluctuating
width. It should be noticed that at the bicritical point the
typical width of a walker is only a few lattice sites. Consid-
100} rZ0spe o ] ering the time evolution of these “walkers” in the long-time
r=0.559: p =0.355 regime and for large lattices, an effective parity-conserving
dynamics may be restored. Concerning the dynamics of these
" . ‘ L “walkers,” it is possible to identify an inactive and an active
10° phase. In fact, the line defined by the first-order phase tran-
t sition points corresponds to the inactive phase for the dy-
o namics of the “walkers,” which ends at the bicritical point.
‘ ' ' ‘ A continuation of this line from the bicritical point through
the reactive phase would correspond to the active phase for
the dynamicgsee Fig. 1 In other words, the dynamics of
these walkers is defined within a subspace of the phase dia-
gram in which the statistical weight of the kinetic processes
involving the specie#\ andB is the same. Recently, Cardy
and Taber have developed a systematic theory for the
branching and annihilating random walk¢2$]. The authors
have shown that in one dimension, fluctuation effects lead to
s the emergence of a nontrivial inactive phase for values of the
] £=0559; p=0.35 branching rate & <o, and a dynamic phase transition at
0y o S 3 o.>0, in contrast to the mean-field result=0. However,
in two dimensions the theory predicts that fluctuation effects
o 0 generate logarithmic corrections and the critical branching
t rate takes the value predicted by the bare mean-field theory
(0.,=0). Then, the identification of an inactive phase for 0
- <r<r. and a dynamic phase transition gt>0 in the
4 present model, are in complete agreement with the theoreti-
o :3?3;9;1):&;4 e cal results. Recent results for a two-dimensional monomer-
£=0.559; p=0.355 monomer surface-reaction model with repulsive lateral inter-
actions[ 26] indicate that the critical branching rate takes the
10° | valuer.=0 (mean-field valug also supporting the theoreti-
cal results.
The same ideas can also be applied to other models in the
PC universality class that violate local parity conservation
[19,21.

R()

10"

V. CONCLUSIONS

) We have studied a monomer-dimer surface reaction lat-
10 I tice model with lateral repulsion among the same species
0 0 using a mean-field analysis and Monte Carlo simulations.
¢ For weak repulsions the model exhibits first-order IPT be-
tween two phases saturated by different species. Increasing
the interaction a reactive window appears whose edges are
second-order critical lines that separate this state from the
absorbing states.

FIG. 10. Log-log plots obtained using the second type of inter- W€ have considered MF approximations that take into
face dynamics simulations for the following values of the param-&ccount correlations up to three lattice sites. The stationary
eters: ¢=0.57, p=0.3484) (upper curvg (r=0.559, p=0.35) density of the species, the phase boundary curves, and the
(middle curve, (r=0.559,p=0.355) (lower curvé. (a) N(t) vst,  jamming coverage have been studied within the MF ap-
(b) P(t) vst, (c) R(t) vst. The inset amplifies the last decade in proaches and the results compared with simulations. For
order to distinguish between the three curves siR¢e) is less  weak(strong repulsion the paifthree-sit¢ MF approxima-
sensitive to changes in the parameters. tion has led us to better results than the three{giter) MF

10
10
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approximation for all the quantities mentioned above. Noand annihilating random walkef&5] have identified a for-
bicritical point has been obtained from the MF approxima-mal permutation symmetry at the Hamiltonian level in the
tions considered in this work. However, phase boundartase of an even number of offspring. This fact again indi-
curves calculated within MF approximations qualitatively re- cates that symmetry among absorbing states plays a relevant
semble the actual phase diagram. Within the three-sites Mfgle in determining the universality class.
approach phase boundary curves come up closestcat ( The value of the critical exponedt=0.71 corresponding
~0.6,p;~0.348), {.~0.6,pg~0.305), which are good es- to the probabilityP(t) that the interface has not collapsed
timations for the actual bicritical pointr{=0.559, p.  pack to its minimum width is in good agreement with the
=0.35). values obtained in other model49,21,27. This corrobo-

The critical behavior of the model has been studied usingates the Bassler-Brown conjectiifi®], which states that the

both static and dynamical Monte Carlo simulations. IPT be-nterfacial fluctuations are an additional universal character-
tween the reactive phase and any of the saturated phases @&c of models in the PC class.

in the DP universality class. However, a critical behavior

different from DP at the point where both DP curves meet

ha_1§ been 'found. The critical exponents .calculated at the bi- ACKNOWLEDGMENTS
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