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Critical behavior of a one-dimensional monomer-dimer reaction model with lateral interactions

Roberto A. Monetti
Institut für Theoretische Physik, Physik-Department der Technischen Universita¨t München, James-Franck-Strasse,

85747 Garching, Germany
~Received 29 December 1997!

A monomer-dimer reaction lattice model with lateral repulsion among the same species is studied using a
mean-field analysis and Monte Carlo simulations. For weak repulsions, the model exhibits a first-order irre-
versible phase transition between two absorbing states saturated by each different species. Increasing the
repulsion, a reactive stationary state appears in addition to the saturated states. The irreversible phase transi-
tions from the reactive phase to any of the saturated states are continuous and belong to the directed percolation
universality class. However, a different critical behavior is found at the point where the directed percolation
phase boundaries meet. The values of the critical exponents calculated at the bicritical point are in good
agreement with the exponents corresponding to the parity-conserving universality class. Since the adsorption-
reaction processes does not lead to a nontrivial local parity-conserving dynamics, this result confirms that the
twofold symmetry between absorbing states plays a relevant role in determining the universality class. The
value of the exponentd2, which characterizes the fluctuations of an interface at the bicritical point, supports the
Bassler-Brown’s conjecture, which states that this is a new exponent in the parity-conserving universality class.
@S1063-651X~98!00407-3#

PACS number~s!: 05.70.Ln, 82.20.Mj, 82.65.Jv, 64.60.Ht
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I. INTRODUCTION

Nonequilibrium models are relevant to a broad scope
phenomena in physics, chemistry, biophysics, ecology,
A relevant feature of the nonequilibrium models which e
hibit a second-order irreversible phase transition~IPT! to a
unique absorbing state is that their critical behavior is in
directed percolation~DP! universality class@1#. DP critical
behavior is observed over wide-ranging problems emerg
from different disciplines such as quantum particle phys
@2#, irreversible catalytic systems@3–5#, the contact proces
@6#, branching annihilating random walks with an odd nu
ber of offspring@7#, etc. This fact led Janssen and Gra
berger to conjecture that in one-component models cont
ous transitions to a single absorbing state are in the
universality class@8#. Motivated by these findings sever
models with multiple absorbing states were proposed bu
new universality class was found@9#. This proved that a
greater number of absorbing states is not enough to obta
critical behavior different from DP. Thus the DP universal
class is apparently extremely robust.

In contrast to the well-established DP universality cla
only a few exceptions are known that do not belong to t
class. The known examples are modelsA andB of probabi-
listic cellular automata@10,11#, nonequilibrium kinetic Ising
models@12#, the interacting monomer-dimer model with in
finite repulsion@13#, and the branching annihilating rando
walks with an even number of offsprings@14–16#. A rel-
evant feature is shared by all these models: the numbe
particles~or kinks! is conserved modulo 2. That is why th
new universality class is sometimes called parity-conserv
~PC! class.

Recently, a hierarchy of unidirectionally coupled DP pr
cesses has been studied@17#. It has been shown by means
field-theoretic renormalization group techniques and Mo
Carlo simulations that new values of the exponentb corre-
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sponding to the order parameter arise at the multicriti
point while the dynamical critical exponents take the sa
values as the ones corresponding to DP. This new re
again poses the question of whether a few distinct univer
ity classes are enough to characterize the critical behavio
nonequilibrium systems@17#.

Few models that display a phase transition in the PC c
where no explicit conservation law is present have appea
in the literature. The known examples are the generali
Domany-Kinzel cellular automata@18#, the three-species
monomer-monomer model@19#, and the monomer-monome
surface reaction model@20,21#. Since these models do no
explicitly conserve any quantity modulo 2 they show th
rather than parity conservation the symmetry among abs
ing states is the origin for the emergence of a different cl
@18,22#.

In this work we study the behavior of the one-dimension
monomer-dimer surface reaction model with lateral rep
sion by means of a mean-field~MF! analysis and Monte
Carlo simulations. This model is an extension in one dim
sion of the well-known Ziff, Gulari, and Barshad surfac
reaction model@3#. The model was first proposed by Kim
and Park@13# and studied in the case of infinitely stron
repulsions. For finite repulsions the model has a rich criti
behavior displaying first- and second-order IPT.

The manuscript is organized as follows. In Sec. II w
begin with a brief description of the model and show t
phase diagram obtained by simulations. In Sec. III
present the MF analysis and compare MF results with sim
lation results. Section IV contains a detailed analysis of
critical behavior of the model performed by means of Mon
Carlo simulations. In the last section we summarize our
sults.

II. THE MODEL

The model we study in this paper was first introduced
Kim and Park@13#. The monomer-dimer reaction model wit
144 © 1998 The American Physical Society
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PRE 58 145CRITICAL BEHAVIOR OF A ONE-DIMENSIONAL . . .
lateral interactions can be defined as follows: A monomeA
or a dimerB2 adsorb at the vacant sites of a one-dimensio
lattice with probabilitiesp andq, respectively, wherep1q
51. Each adsorption attempt begins by selecting one sit
the lattice at random and if that site is occupied the trial en
Otherwise, if the site is empty, anA (B2) species is selecte
with probability p (q), respectively. In order to introduc
lateral interactions between the same kinds of particles,
assumed that the adsorption probability of the selected
cies depends on the configuration of the adsorbed part
on the nearest neighboring~NN! sites of the selected one
Then the adsorption probabilityPA can be written as

PA5H p if '” NN A

p~12r A! if ' NN A,
~2.1!

where 0<r A,1. For the adsorption ofB2 one has first to
select at random a NN site of the empty one and if that sit
occupied the trial ends because the dimer cannot be de
ited on the lattice. Otherwise, if the site is empty, the adso
tion probabilityPB2

is given by

PB2
5H q if '” NN B

q~12r B! if ' NN B.
~2.2!

where 0<r B,1. In this way, the parametersr A and r B can
be interpreted as the repulsive interactions among sim
species. Unlike species on adjacent sites react immedia
and leave the lattice, leading to a process limited only
adsorption.

In this work we study the caser A5r B5r . Previous stud-
ies of this model@13,22# focused on various aspects of th
critical behavior for infinite repulsive lateral interactions, i.
r A5r B51. In this case, there are two equivalent absorb
states whose configurations are given only by monomers
cupying the odd- or even-numbered lattice sites, resp
tively. The critical behavior of this model was found to be
the PC universality class.

Figure 1 shows the phase diagram of the system obta
by both static and dynamical Monte Carlo simulations. Th
are two different absorbing states characterized by the la
saturated byA or B species, respectively. For weak repu
sions the system displays first order IPT between the s
rated states, and no reactive phase is observed. The first
critical points have been calculated by means of static Mo
Carlo simulations since correlations at first order IPT
short ranged. Increasing the repulsion a reactive window
pears whose edges are second order critical lines that s
rate this state from the absorbing states. The second o
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IPT have been calculated using dynamic Monte Carlo sim
lations since fluctuations in this case are imposing.

For r 51 ~infinite repulsion! @13# one can identify since
the very beginning the presence of two equivalent absorb
states. Although one cannot finda priori a situation like this
for 0<r ,1, a phase point where both absorbing states
statistically equivalent can exist. This happens exactly wh
both second order lines meet, i.e., at the bicritical point.
similar phase diagram was also found in the interact
monomer-monomer reaction model@20#. Very recently, a
careful study at the bicritical point led to the conclusion th
this point is in the PC universality class@21#. Given the
symmetry of the adsorption process in the interact
monomer-monomer reaction model the bicritical point w
found on the linep5q50.5. Since the model we study i
this work does not display this symmetry, the localization
the bicritical point is more difficult.

III. MEAN-FIELD THEORY

In order to obtain a qualitative understanding of the b
havior of the model a mean-field analysis is performed. W
consider mean-field approximations@23# that study the time
evolution of blocks up to three sites, neglecting higher-or
correlations.

We start considering a one-dimensional system of sizL
at time t. Each site can be only at three different stat
namely,A, B, or V corresponding to a site occupied by
particle of typeA, B or empty, respectively. In order to ca
culate MF approximations taking into account correlatio
up to three lattice sites, we write down the following MF ra
equations:

FIG. 1. Phase diagram of the model obtained by means
Monte Carlo simulations.
drA

dt
5prVVV1p~12r !~rAVA1rAVV1rVVA!2q~12r !~rBVVA1rAVVB!2q~2rAVVA1rAVVV1rVVVA!, ~3.1!

drB

dt
5q~2rVVVV1rAVVV1rVVVA!1q~12r !~rBVVV1rVVVB1rBVV1rVVB!2p~12r !~rAVB1rBVA!

2p~rBVB1rBVV1rVVB!, ~3.2!
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drAA

dt
5p~12r !~rVVA1rAVV12rAVA!2q~12r !~rAAVVB1rBVVAA!2q~rAAVVA1rAVVAA1rAAVVV1rVVVAA!, ~3.3!

drBB

dt
5qrVVVV1q~12r !~rBVVB1rBVVV1rVVVB1rBVV1rVVB!2p~12r !~rBBVA1rAVBB!

2p~rVVBB1rBBVV1 1
2 rBBVB1 1

2 rBVBB!, ~3.4!

drAAA

dt
5p~12r !~rVVAA1rAAVV1rAVA1rAAVA1rAVAA!2q~12r !~rBVVAAA1rAAAVVB!

2q~rAAAVVA1rAVVAAA1rVVVAAA1rAAAVVV!, ~3.5!

drBBB

dt
5q~12r !~2rBVVB1rVVBB1rBBVV1rBVVV1rVVVB!2p~12r !~rBBBVA1rAVBBB!

2p~rVVBBB1rBBBVV1
1
2 rBVBBB1

1
2 rBBBVB!, ~3.6!

drAVA

dt
5p~rAVVV1rVVVA!12p~12r !rAVVA2p~12r !rAVA2q~12r !~rBVVAVA1rAVAVVB!

2q~rAVAVVA1rAVVAVA1rVVVAVA1rAVAVVV!, ~3.7!

drBVB

dt
5q~rBVVVV1rVVVVB1rAVVVB1rBVVVA!12q~12r !rBVVVB2p~12r !~rBVBVA1rAVBVB!

2p~rVVBVB1rBVBVV1rBVBVB1rBVB!, ~3.8!

and

drAVB

dt
5prVVVB1q~rVVVVA1rAVVVA!1p~12r !rAVVB1q~12r !rAVVVB2p~rAVBVV1

1
2 rAVBVB!2p~12r !rAVBVA

2q~rVVVAVB1rAVVAVB!2q~12r !rBVVAVB2p~12r !rAVB , ~3.9!
e
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wherer i 1i 2i 3 . . . is the density of the blocki 1i 2i 3 . . . and we

have used the equations that link the density of ann block
and the density of ann11 block

r i 1i 2••• i n
5 (

i n11

r i 1i 2••• i ni n11
5(

i 0
r i 0i 1i 2••• i n

, ~3.10!

whereAB pairs are not allowed since they immediately r
act. The processes considered to obtain Eqs~3.1!–~3.9! are
listed in Table I. Furthermore, we obviously have the follo
ing constraint:

rA1rB1rV51. ~3.11!

In the simple MF analysis we just neglect correlatio
among sites, i.e.,r i 1i 2i 3••• i m

'r i 1
r i 2

r i 3
•••r i m

. Within this
approximation, Eqs.~3.1!, ~3.2!, and~3.11!, comprise a close
set of equations. Then a solution forrA , rB , andrV can be
obtained. However, more equations are needed in orde
obtain results for higher order MF analysis. In the pair M
approach we approximate the density of blocks longer t
two sites in the following way
-

to

n

r i 1i 2i 3••• i m
'r i 1i 2 )j 52

m21 r i j i j 11

r i j

. ~3.12!

Using Eqs.~3.1!–~3.4!, ~3.11! and writing down the equa
tions ~3.10!, which relate single-site densities with pair de
sities a solution in the pair-MF approximation can be o
tained. Proceeding in a similar way, within the three-si
MF approximation density of blocks longer than three si
are replaced by

r i 1i 2i 3••• i m
'r i 1i 2i 3 )j 52

m22 r i j i j 11i j 12

r i j i j 11

. ~3.13!

Due to the immediate reaction ofAB pairs, the stationary
densities of triplesAVB andBVA are equal. Then, by mean
of equations~3.1!–~3.9!, and~3.11!, and considering all the
relations between single-site densities, density of pairs
density of triples, the three-sites MF approximation can
solved. It should be pointed out that due to the complexity
the set of equations all the MF approximations have b
solved numerically.

Figure 2 shows plots of the densities ofA and B in the
stationary state versusp andq, respectively, for two differ-
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TABLE I. Probabilities for the allowed kinetic processes. The adsorption attempt is always on the m
sites.

A adsorption Rate B2 adsorption Rate

VVV→VAV p VVVV→VBBV q

VVA→VAA p(12r ) BVVV→BBBV q(12r )

AVV→AAV p(12r ) VVVB→VBBB q(12r )

AVA→AAA p(12r ) BVVB→BBBB q(12r )

VVB→VVV p AVVV→VVBV q

BVV→VVV p VVVA→VBVV q

BVB→BVV 1
2 p AVVA→VVVV q

BVB→VVB 1
2 p

AVB→AVV p(12r ) AVVB→VVBB q(12r )

BVA→VVA p(12r ) BVVA→BBVV q(12r )
Fo
e

e

F
MF
e
re-
ent values of the repulsionr obtained by static Monte Carlo
simulations, simple, pair, and three-site MF analysis.
weak repulsion (r 50.5) the sharp jump observed in both th
densities ofA andB is the signature of first order IPT. Sinc
r
correlations at a first order IPT are finite we expect the M
approaches to give good results. Although the simple
approximation is quite poor, results quickly improve for th
pair and three-site approaches. For higher values of the
e MF
FIG. 2. Plots ofrA and rB vs p and q , respectively, obtained using static Monte Carlo simulations, simple, pair, and three-sit
approximations.~a! rA vs p for r 50.5, ~b! rB vs q for r 50.5, ~c! rA vs p for r 50.9, and~d! rB vs q for r 50.9.
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148 PRE 58ROBERTO A. MONETTI
pulsion r the sharp variation in the densities is no long
present but a smooth transition is observed. In general,
theories do not give good results near second order con
ous IPT since second order IPT are governed by fluctuati
However, as observed in Figs. 2~c! and 2~d!, we still obtain
fairly good agreement between the three-sites MF appro
and simulation results.

Figure 3 shows plots of the phase boundary for both thA
and B saturated phases obtained by simulations, pair,
three-site MF approximations. Within the simple MF ana
sis the phase boundary for theA (B) saturated phase alway
occurs atp51 (q51), that is why it is not included in the
figure. For weak repulsions, the pair MF approach gives b
ter results for both theA and B phase boundaries than th
three-sites MF analysis. However, for stronger repulsio
correlations become more important and the three-sites
approximation leads to better results. It should be pointed
that no bicritical point can be obtained from the MF appro
mations considered in this work. However, it is observed
Fig. 4 that phase boundary curves qualitatively resemble
actual phase diagram. The closest points in the phase
gram obtained within the three-site MF approach
(r c'0.6, pc

A'0.348!, (r c'0.6, pc
B'0.305), which are good

approximations for the actual bicritical point (r c50.559,
pc50.35) ~see next section!. In the MF treatment of the

FIG. 3. Phase boundary curves obtained by means of Mo
Carlo simulations, pair, and three-site MF approximations.~a!
Boundary of theA-saturated phase,~b! boundary of theB-saturated
phase.
r
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interacting monomer-monomer reaction model@21# a bicriti-
cal point can always be found given the symmetry of t
adsorption process which is reflected in the MF rate eq
tions. However, no good approximation for this point w
obtained up to the three-sites MF analysis.

The monomer-dimer reaction model with lateral intera
tions displays a feature that is not present in the interac
monomer-monomer reaction model. In fact, forq51, the
stationary densityrB is always less than one in spite of th
value of the repulsionr . However,rB is a function ofr since
local configurations likeBBVBB are more likely to occur
when the repulsion is increased. Then, forq51, we have a
one-dimensional random dimer filling problem with later
interactions. In this caserB is commonly called jamming
coverage, which we denote asQ j (r ).

Figure 5 shows a plot ofQ j (r ) versusr obtained by simu-
lations, pair, and three-site MF approximations. It should
noted that a MF analysis of the jamming coverage require
least to take into account correlations up to pairs of sites.
r 50 both MF analyses predictQ j (0)50.8646 . . . ,reproduc-
ing the value derived long ago by Flory@24#. As it has also
been observed for the phase boundary curves, the three
~pair! MF approximation gives better results for stron
~weak! repulsions.

We did not calculate higher order MF approximatio
since the algebra becomes much more complicated and

te FIG. 4. Phase boundary curves obtained within the pair,
three-site MF approximations.~a! Pair MF approximation,~b!
three-sites MF approximation.
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MF approaches presented here provide a fairly good qua
tive understanding of the model.

IV. SIMULATIONS RESULTS

As mentioned in the last section, static Monte Carlo sim
lations are suitable to obtain the coordinates of the first-or
transition points. However, second-order IPT are domina
by fluctuations, so in a finite system and close to the criti
point, the stationary states of the reactive phase can irrev
ibly evolve into the saturated state~absorbing state!. Due to
this circumstance, the precise determination of both crit
points and critical exponents is rather difficult. However, t
shortcoming can be avoided by performing an epidem
analysis@1#. Within this context, the epidemic analysis
usually called ‘‘defect dynamics’’ simulations. For this pu
pose one starts, att50, with a small block of vacant sites i
an otherwise saturated lattice, i.e., a configuration close
one of the absorbing states. Then, the time evolution of
block is analyzed by measuring the following properties:~i!
The average number of vacant sites at timet, N(t), ~ii ! the
survival probability of the block at timet, P(t), and~iii ! the
average distance over which the block has spread at timt,
R(t). Finite-size effects are absent because the system
taken large enough to avoid the presence of vacant site
the boundaries. For this purpose a lattice of 104 cells is
enough. Averages are taken over 105 different samples. Nea
the critical point, the number of vacant sites is often ve
small. Then, we improve the efficiency of the algorithm
keeping a list of vacant sites. Time is incremented by 1/n(t),
where n(t) is the number of vacant sites at timet. Time
evolution of blocks is monitored up tot5105. At criticality,
the following scaling behavior holds:

N~ t !}th, ~4.1!

P~ t !}t2d, ~4.2!

and

R~ t !}tz/2, ~4.3!

whered, h, andz aredynamicexponents.

FIG. 5. Plot of the jamming coverageQ j (r ) vs r obtained using
Monte Carlo simulations, pair, and three-site MF approximation
a-
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At the bicritical point, it is useful to perform another ep
demic analysis often called ‘‘interface dynamics’’ simul
tions. In this case one starts att50 with a minimum width
interface between two saturated phases. SinceAB pairs im-
mediately react, there must always be at least a vacancy
tween two saturated phases. Then, the epidemic always
vives and consequentlyd50. In addition, a second type o
‘‘interface dynamics’’ simulation can also be performed.
this case the simulation finishes when the interface has
lapsed back to its initial width@19,21#. At the bicritical point
Eqs.~4.1!, ~4.2!, and~4.3! hold butP(t) must be interpreted
as the probability that the interface has not returned to
minimum width. Interface dynamics simulations give us i
formation about the competitive growth of different d
mains.

Figure 6 shows log-log plots ofN(t), P(t), andR(t) for
different values ofp close to the phase boundary between
B-saturated and the reactive phase keepingr 50.9 constant.
The straight line obtained for the three quantities mention
above atq50.835 is the signature of critical behavior, whi
slight upward ~downward! deviations for q50.8325 (q
50.8375) indicate supercritical~subcritical! behavior, re-
spectively. In this way we have determined the critical poi
along both second order phase boundary curves. The ana
at the bicritical point is discussed later. The spreading
epidemic analysis is a powerful method since the error b
for the calculations of the critical points are on the thi
digit. The critical exponents obtained at various critic
points along the phase boundary curves have the same v
~within error bars! and are in good agreement with the d
namic critical exponents corresponding to DP, which are
following:

d>0.162, h>0.317, z>1.282. ~4.4!

By drawing the second order phase boundary curves
gets the first clue to the position of the bicritical point. Th
main property of the system at the bicritical point is t
symmetry of both saturated phases. This means that a
bicritical point both absorbing states are statistically equi
lent. Then, defect dynamics simulations at the bicritical po
should give identical results no matter what saturated ph
is used to start the simulation.

Figure 7 shows log-log plots ofN(t), P(t), and R(t)
obtained from defect dynamics simulations started using
ferent absorbing states at the bicritical point. It is observ
that the critical behavior up to timet'105 is governed by the
same exponents. Then, our best estimation of the value o
bicritical point is (r c50.559,pc50.35). It should be pointed
out that in the study of the interacting monomer-monom
reaction model@21# the localization of the bicritical point
was easier because of the symmetry of the adsorpt
reaction processes.

We obtain the following values for the dynamical critic
exponents at the bicritical point

d50.291060.0002, h50.003460.0003,

z51.14760.0004. ~4.5!

It should be remarked that the error bars merely indicate
statistical errors obtained from regressions.

.
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The exponentb, which characterizes the critical behavi
of the order parameter, has been obtained directly in st
simulations. For the present model a good choice for
order parameter is the average density of empty sitesrV .
The behavior of the order parameter close to a critical po
is given by

rV;uDub, ~4.6!

FIG. 6. Log-log plots obtained using defect dynamics simu
tions keepingr 50.9 constant.~a! N(t) vs t, ~b! P(t) vs t, ~c! R(t)
vs t.
tic
e

t

where D is the distance from a point within the reactiv
phase to the bicritical point. Figure 8 shows a plot ofrV
versusD where the points within the reactive phase belo
to a straight line that bisects the reactive window. Althou
static simulations are known to be quite inaccurate to de
mine b, we found the reasonable valueb50.8860.005.

The set of critical exponents calculated at the bicritic
point are in good agreement with the ones correspondin

-
FIG. 7. Log-log plots obtained using defect dynamics simu

tions initiated using different absorbing states at the bicritical po
~a! N(t) vs t, ~b! P(t) vs t, ~c! R(t) vs t.
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the PC universality class. For defect dynamics simulation
r .r c and close to the bicritical point a crossover is observ
where the critical behavior at short times~long times! is gov-
erned by the PC~DP! universality class.

In the following we present the results of the ‘‘interfac
dynamics’’ simulations. Figure 9 shows plots of the numb
of vacancies in the interfaceN(t) and the average size of th
interfaceR(t) obtained using the first type of ‘‘interface dy
namics’’ simulation~whered50). We average over 105 in-
dependent samples and we find the following value for
dynamical critical exponents:

h150.284060.0002, z151.150660.0004. ~4.7!

These values are in good agreement with the correspon
critical exponents obtained in other models in the PC univ
sality class@13–15,18,19#. It should be noted that the value
of h1 and z1 are similar to the ones obtained from ‘‘defe
dynamics’’ simulations if we only average over survivin
runs. Then the first type of ‘‘interface dynamics’’ simulatio
yields no new information about the dynamics of the int
face and reflects the full equivalence of the absorbing st
at the bicritical point.

Figure 10 shows plots ofN(t), P(t), andR(t) obtained
using the second kind of ‘‘interface dynamics’’ simulatio
We average over 93106 independent samples and we fin
the following values for the critical exponents:

d250.716360.0003, h2520.427760.0004,

z251.16060.0006. ~4.8!

We first observe that the values of the exponentsz1 andz2
are similar. The exponenth1 must be compared withd2
1h2, which governs the time evolution of the vacant sit
averaged only over the surviving runs. Both exponents
equal within error bars. This is the signature of the univer
behavior of the critical spreading of the interface. The va
of the new independent dynamical exponentd2 supports the
Bassler-Browne conjecture@19#, which states thatd2 is a
new universal exponent within the PC class.

FIG. 8. Plot of the density of vacant sitesrV vs the distanceuDu
to the bicritical point. A straight line of slopeb50.90 has been
included.
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Recently Park and Park@22# have found that the interact
ing monomer-dimer reaction model with infinite repulsiv
interaction (r 51) supports a kink representation where t
total number of kinks is conserved modulo 2. By including
parity-conserving symmetry breaking field that favors one
the absorbing states, the authors showed that the critica
havior of the model changes from PC to DP. Then, th
concluded that the conservation of the number of kin
modulo 2 is not the reason for observing a universality cl
different from DP but the symmetry of the absorbing stat

In contrast to the case with infinite repulsion, the pres
variant of the model involves adsorption-reaction proces
in which parity is not conserved explicitly. Although by the
own nature the number of domain walls are conserv
modulo 2, it should be remarked that a nontrivial PC dyna
ics requires the creation of at least three kinks per s
which is not possible in our model. This corroborates that
symmetry among absorbing states is indeed the only es
tial property of models in the PC class@13,18,19,21#.

It is interesting to discuss the relation between the pres
model and the branching and annihilating walks mode
Static Monte Carlo simulations close to the bicritical po
reveal that stationary configurations are formed by la

FIG. 9. Log-log plots obtained using the first type of interfa
dynamics simulations (d50) for the following values of the param
eters: (r 50.57, p50.3484) ~upper curve!, (r 50.559, p50.35)
~middle curve!, (r 50.559,p50.355) ~lower curve!. ~a! N(t) vs t,
~b! R(t) vs t.
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FIG. 10. Log-log plots obtained using the second type of int
face dynamics simulations for the following values of the para
eters: (r 50.57, p50.3484) ~upper curve!, (r 50.559, p50.35)
~middle curve!, (r 50.559,p50.355) ~lower curve!. ~a! N(t) vs t,
~b! P(t) vs t, ~c! R(t) vs t. The inset amplifies the last decade
order to distinguish between the three curves sinceR(t) is less
sensitive to changes in the parameters.
clusters of different species that survive a long time. Then
is clear that the dynamics of domain walls between clus
of different species will be relevant at the bicritical poin
Following the ideas presented in Ref.@18#, at the bicritical
point ‘‘walkers’’ can be identified with domain walls be
tween clusters of different species. It should be pointed
that we have to generalize the concept of walkers. In fact,
‘‘walkers’’ defined above are extended objects of fluctuati
width. It should be noticed that at the bicritical point th
typical width of a walker is only a few lattice sites. Consi
ering the time evolution of these ‘‘walkers’’ in the long-tim
regime and for large lattices, an effective parity-conserv
dynamics may be restored. Concerning the dynamics of th
‘‘walkers,’’ it is possible to identify an inactive and an activ
phase. In fact, the line defined by the first-order phase tr
sition points corresponds to the inactive phase for the
namics of the ‘‘walkers,’’ which ends at the bicritical poin
A continuation of this line from the bicritical point throug
the reactive phase would correspond to the active phase
the dynamics~see Fig. 1!. In other words, the dynamics o
these walkers is defined within a subspace of the phase
gram in which the statistical weight of the kinetic process
involving the speciesA andB is the same. Recently, Card
and Täuber have developed a systematic theory for
branching and annihilating random walkers@25#. The authors
have shown that in one dimension, fluctuation effects lead
the emergence of a nontrivial inactive phase for values of
branching rate 0<s,sc , and a dynamic phase transition
sc.0, in contrast to the mean-field resultsc50. However,
in two dimensions the theory predicts that fluctuation effe
generate logarithmic corrections and the critical branch
rate takes the value predicted by the bare mean-field the
(sc50). Then, the identification of an inactive phase for
<r ,r c and a dynamic phase transition atr c.0 in the
present model, are in complete agreement with the theo
cal results. Recent results for a two-dimensional monom
monomer surface-reaction model with repulsive lateral int
actions@26# indicate that the critical branching rate takes t
valuer c50 ~mean-field value!, also supporting the theoreti
cal results.

The same ideas can also be applied to other models in
PC universality class that violate local parity conservat
@19,21#.

V. CONCLUSIONS

We have studied a monomer-dimer surface reaction
tice model with lateral repulsion among the same spec
using a mean-field analysis and Monte Carlo simulatio
For weak repulsions the model exhibits first-order IPT b
tween two phases saturated by different species. Increa
the interaction a reactive window appears whose edges
second-order critical lines that separate this state from
absorbing states.

We have considered MF approximations that take i
account correlations up to three lattice sites. The station
density of the species, the phase boundary curves, and
jamming coverage have been studied within the MF
proaches and the results compared with simulations.
weak ~strong! repulsion the pair~three-site! MF approxima-
tion has led us to better results than the three-site~pair! MF

-
-
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approximation for all the quantities mentioned above.
bicritical point has been obtained from the MF approxim
tions considered in this work. However, phase bound
curves calculated within MF approximations qualitatively r
semble the actual phase diagram. Within the three-sites
approach phase boundary curves come up closest ar c

'0.6,pc
A'0.348), (r c'0.6,pc

B'0.305), which are good es
timations for the actual bicritical point (r c50.559, pc
50.35).

The critical behavior of the model has been studied us
both static and dynamical Monte Carlo simulations. IPT b
tween the reactive phase and any of the saturated phase
in the DP universality class. However, a critical behav
different from DP at the point where both DP curves m
has been found. The critical exponents calculated at the
critical point are in good agreement with the ones cor
sponding to the PC class. Since this model does not cons
explicitly any quantity modulo 2, it corroborates that th
twofold symmetry in the absorbing states is the reason
obtaining a critical behavior different from DP. It is releva
to mention that the authors of the theory for the branch
o
-
y
-
F

(

g
-
are

r
t
i-
-

rve

r

g

and annihilating random walkers@25# have identified a for-
mal permutation symmetry at the Hamiltonian level in t
case of an even number of offspring. This fact again in
cates that symmetry among absorbing states plays a rele
role in determining the universality class.

The value of the critical exponentd2>0.71 corresponding
to the probabilityP(t) that the interface has not collapse
back to its minimum width is in good agreement with th
values obtained in other models@19,21,27#. This corrobo-
rates the Bassler-Brown conjecture@19#, which states that the
interfacial fluctuations are an additional universal charac
istic of models in the PC class.
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